590

Acta Cryst. (1957). 10, 590

On the Determination of Unit-Cell Dimensions from Powder Diffraction Patterns

By P. M. pE WoLrF
Technisch Physische Dienst T.N.O. en T'.H., Delft, Netherlands

(Recetved 3 December 1956 and in revised form 4 March 1957)

The general approach proposed by Ito has been successfully used for the determination of the
unit cells of many compounds. The analysis of three patterns is reconstructed to illustrate several
conclusions:

Among the simplest algebraic relations between @ values, the one Ito mentions is the most power-
ful for finding clues leading to a zone. Some other relations are also useful, and a general relation
yields information about the mutual orientation of three zones.

Determination of the Bravais type becomes automatic merely by arranging the @’s in a sche-
matized reciprocal lattice. Any symmetry is immediately apparent because it causes the @’s to
form sets of equal values for equivalent points. The analysis is simplified if this geometric point of
view is taken consistently ; indices need not be used explicitly until the lattice symmetry has been
found.

The data, obtained by using standard equipment (114 mm. diameter focusing camera), were of
sufficient quality to allow the determination of the unit cells even of steroids in a couple of hours,
provided the line width did not appreciably exceed the instrumental width (0-05°  at half height).

1. Introduction

The ‘indexing problem’ is essentially a puzzle: it
cannot be stated in rigorous terms, or be solved in a
general way by clear-cut methods, because of the un-
predictable distribution of unobserved lines in a
powder pattern. It would be quite an easy puzzle if
errors of measurement did not exist. This added in-
convenience, however, is enough to raise some doubt
as to whether the determination of the unit cell of an
arbitrary polycrystalline phase is possible in, say, an
average of half a day’s work or less.

From the literature on the subject one gets the im-
pression that in the general opinion this question is
subject to a very strong doubt indeed. With the ex-
ception of Ito (1949)*, all authors restrict themselves
to special cases: unit cells without arbitrary angles
(Hesse, 1948; Lipson, 1949; Stosick, 1949), or with
unusual forms (Vand, 1948). On the other hand, Ito’s
general approach—which is from the triclinic rather
than from the cubic side of the symmetry sequence—
seems to be looked upon by many as a very elaborate
one, to be used only when all other means have failed.

Experience gathered in the unit-cell determination

of some 60 compounds of a wide range of symmetry
and cell size has convinced the present author that
there is no valid reason for such an opinion. The general
approach is justified not only by the natural abundance
of compounds with low symmetry, but equally by its
usefulness in the determination of orthorhombic, and
sometimes even of tetragonal and hexagonal unit cells
(namely when they are not immediately recognized as
such). It is not an unduly time-consuming procedure,

* Cf. also Bunn (1955). The procedure described by Novik
(1954) is a graphical counterpart of Ito’s general approach.

especially if advantage is taken of simple reciprocal-
lattice geometry.

Also it would perhaps have been better appreciated
if Ito had laid less exclusive emphasis on the algebraic
aspects.

A striking example is the final algebraic unit-cell
reduction used by Ito to find the Bravais type. For
that purpose the mere visual inspection of an array
of numbers, which have to be calculated anyway,
will be shown to be fully adequate (cf. § 3). Still, that
does not make a large difference in the amount of
work spent on analyzing a pattern. At any stage of
the analysis, however, advantages can be gained by
using geometry, as well as some algebraic relations not
mentioned by Ito. Together with the one Ito did
mention (our equation (4)), which is by far the most
powerful key to the problem, all these features add
up to the kind of technique which will now be de-
scribed.

2. Algebraic relations

When the angles or distances measured in the powder
diffraction pattern are expressed as a set of figures @
equal or proportional to sin2 §, the problem is to fit
to this set a theoretical quadratic form

Q(REl) = ayh2+agok? + a2 +ahk+agkl+a,5hl (1)

such that discrepancies and absences—not counting
systematic extinctions—can be reconciled with the
expected accuracy and sensitivity of the measuring
device.

Obviously one has to find relations between the
observed @ values, corresponding to theoretical rela-
tions derived by eliminating the a,’s from two or



P.M. DE WOLFF

more of the equations (1). Such theoretical relations
can be grouped as follows:

(a) Relations between reflexions of different orders
from a common lattice plane:

n*Q(mh) = m?Q(nh) , (@)

where @(h) refers to the reciprocal-lattice point with
radius vector h.

() Relations for a zone of lattice planes: The
quadratic form (1) now can be transformed into

QR'E'0) = ik +al bk +agk’® . 3)

In order to eliminate the three coefficients, four of
these equations have to be used. The result will there-
fore be a linear equation in four @’s. There exists an
infinite number of these; the most important one is
Ito’s equation:

Q(h1+h2)+Q(h1—h2) = 2{Q(h1)+Q(h2)} . (4)
Some others, however, are also valuable, especially

Q(h1+2hz)“Q(h1"2h2) = 2{Q(h1+h2)—Q(h1_h2)} (5)
and
@(h,+3h,)—-Q(h,) = 3{Q(h1+2h2)_Q(h1+h2)} . (6)

The relations (5) and (6) are special cases of the rela-
tion
Q(h+2h')—Q(h—zh") = 2{Q(h+h)—Q(h—h")}

{for (6) x = 2; for (6) z = 3, h = h,+}h,, h’ = 1h,),
which follows directly from the cosine rule, if one
remembers that @(h) is proportional to |h|2.

The equations (5) and (6), apart from serving as a
means to detect relations among the observed @’s,
also make it possible to calculate by mental arithmetic
any row for which @’s of three consecutive points are
given, because the numbers involved are relatively
small. This extrapolation permits a quick examination
of each of the many zone trials which often have to
be tested before a close fit is found.

(¢) General relations: Seven equations of type (1)
have to be used in order to eliminate the six co-
efficients. Of the resulting linear equations in 7 @’s,
the following is the simplest:

Q(h;+hy+h;)+Q(hy)—Q(h; +hy)—Q(hy+hy)
= @(h;+h,)-Q(h)—Q(hy) . (7)

This equation is easily proved by transforming h,, h,
and hy into (100), (010) and (001), and substituting
equation (1). It is useful in the last stages of analysis
as well as in the calculations needed for adjusting the
constants of triclinic reciprocal lattices (cf. Example
IIT of § 4).

3. Schematized lattices and their automatic
reduction

Following Thewlis & Hutchinson (1955), we use the
term ‘reduction’ in the sense of: ‘bringing out the
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symmetry’ and apply it to a lattice, so that confusion
with unit-cell reduction can hardly occur.

In equations (2)—(7) we have expressly used a general
notation, instead of putting h, = (100), h, = (010)
ete., in order to stress the fact that there is no need
to assign even provisional indices to these vectors.
For instance, if we find observed values @, ..., @,

satisfying (4):
Q3+ Qs = 2(Q1+Q2) ,

we can place these @’s at lattice points corresponding
to the vectorial relation expressed by (4) and proceed
to calculate the @ values of neighbouring lattice points
by using (2), (5) and (6), without even thinking of
indices or of the constants a; in (I).

Now suppose a zone of the reciprocal lattice has
been established, and suppose it contains two equal
Q values @(h;) = @(h,) (which means that |h;| = |h,),
no equalities occurring among lower @ values. Then
the question arises whether lattice symmetry is the
cause of this coincidence. If this is so, h;+h, will be
directions of symmetry in the reduced, orthogonal
array. Referred to these axes, the points h, and h,
can be shown to receive indices with a common abso-
lute value, say, (&, &,) and (h,, &,)*.

I
prd ® | X ®
[
I
® ® » O
\\ | /
| / h
° hz\x I # X
Nt/
\ /
° ® -——Q-->® h-h,

[ origin of reciprocal lattice

@ Points of the original array

X Points generated by reduction
QO Points with new Q values

Fig. 1.

Consider the case shown in Fig. 1, where %, — 2.
It is seen that even assuming the reduced array to
be centred, a number of new lattice points are gener-
ated by reduction. Some of these new points have
@ values not necessarily equal to the original ones,
If the supposed lattice symmetry is real, a reasonable
number of these new @ values should occur among the
observed data. Now it can be proved that in a given
range on the average h,—2+1/h,. new @ values are

* In terms of the original array, &, is the number of primi-
tive meshes contained in the parallelogram with edges h,
and h, if $(h, +h,) is not a lattice point, and half that number
if it is.
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generated for each original @ value. Thus, for a success-
ful reduction A, has to be small (mostly 1 or 2), or
in other words: the smallest equal @ values should
occur close to the origin.

When a few zones have been established, these
must be combined to a three-dimensional lattice. In
principle this can be done by using (7) (cf. Example
II1, § 4). However, reduction is often possible also in
this stage of the analysis (c¢f. Examples I and II,
§4).

The final result will in any case be a reciprocal
lattice schematized layer-wise, in which the lattice
symmetry is clearly shown. By schematizing one of
Ito’s results in this way we shall prove that this is so
even if one deliberately ignores symmetry up to the
very last stage. The data are from Ito (1949), where the
indices of a number of lines referred to a provisional
triclinic unit cell are compared with the final indices.
The scheme taken from the provisional indexing
(expressed as 10%/d?) is*:

5390 3332 2646 3332 5390 k=2
4949 2205 833 833 2205 4949 1 :0=0
0 686 2744 0
h= 2 1 0 T 2 3
2447 10756 1075 2447 k=1 ]
2086 928 242 928 2086 0, 0=1
2447 1075 1075 2447 I [
3712 1654 968 16564 k=0 =2

The pairs of equal @ values for I = 0 show that the
directions of symmetry in this zone are 0-2646 and
0-686. A similar symmetric configuration is observed
in the layer I = 1, centered about 242. Therefore it is
immediately apparent that the above scheme is a
distortion of an orthorhombic lattice:

2646 3332 5390
833 2205 (=0
O 686 2744
1075 2447 P
242 928 2086 [ ©
968 1654 3712 1=2

Any further reduction is impossible because there
are no longer any systematically equal sets of @ values
in this octant.

This example, which is about the most intricate Ito
could have produced, shows that even for final reduc-
tion Delaunay’s method is rather far-fetched, how-
ever elegant and useful it may be for standardizing
the unit cell of a triclinic lattice.

Only when the complete schematized lattice with
its full symmetry has been obtained is there occasion
to start the assignment of indices and to calculate

* In this and the following schemes, the origin (sub-origin)
of a zone (layer) of the reciprocal lattice is printed in italic
type; the origin of a reduced zone as [J.
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the unit cell. Up to that point, what one is actually
determining is not a unit cell, nor even a reciprocal
unit cell, but a reciprocal lattice.

4. Examples

For three patterns a reconstruction of the analysis will
now be given. The lists of @ = 10%sin% § are given
in Table 1.

1. Desoxycholic actd

The first two lines, taken as h; and h, in (4}, satisfy
approximately 2(@,+@,) = @,+¢, (indices referring
to line numbers from Table 1). The double appearance
of @, leads to the following reduced scheme (bold
figures are corroborated by the data)

1296 x 1652 x 2720
X 413 x 1125 x
O X 356 x 1424

Some of the intermediate lattice points (crosses)
are observed, but at this stage their number was not
thought to be convincing.

Looking for clues among the remaining lines, com-
binations with either @, or @, in equation (4) were not
immediately found. Instead, from Q,;, —@,,=3(Qs—@5)
the following row was established, using (6):

239-6 1513 1456 2225
the ‘period’ of which is calculated, using (4), as
$(151-3 +222-5)— 1456 = 41-3 = @, .

Moreover, this row exceeds the first diagonal row from
the above zone by 110-0. This points to an ortho-
rhombic lattice in which, after completion, the re-
maining Q.s’s are found to fit neatly in the ‘crosses
position’ of the above scheme; thus the lattice is not
centered after all:

291-6 300-5 327-2 3717 4340

129-6 1385 1652 209-7 272-0 352-1 4500 } =0
32:4 413 68-0 1125 174-8 254-9 352-8 4685 o
O 89 356 801 142-4 2225 3204 436-1

401-6 410-5 437-2 481-7

2396 248-5 275-2 309-7 382-0 462-1

142-4 151-3 178-1 222-5 284-8 364-9 462-8
1100 1189 1456 190-1 2524 3325 4304

4724 4813
440-0 448-9 4756

In spite of the meagre coverage of the zone I = 0
by observed lines, this lattice is not a difficult one and
could have been determined in many other ways. It is
shown merely as an example of the use of equation (6).

I1I. Progesterone

Ito’s equation (4) is successfully applied to the first
two lines figuring as h, and h,. The complete zone
up to @ = 600, after some adjustment, is as follows:
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Table 1*
I 11 111
Line No. Cale. Obs. Cale. Obs. Calc. Obs.
1 35-6 35-7 68:6 69:3 166-3 165-9
2 41-3 41-4 86:6 87-3 . 1755 176-1
3 68-0 68:6 93-0 93-5 . 261-1 261-2
4 1125 112-5 124-1, 124-4 124.3 356-6, 356-3 356-0
5 118:9 119:5 150-0 150-1 462-7 463-9
6 142-4, 142-4 142-8 161-9 162:0 474-8 4740
7 145-6 145-9 179-9 179-5 539-1 539-0
8 151-3 151-7 2055 +205-9 620-4 620-6
9 174-8 173-8 217-4 217-2 646-4 6439
10 222-5, 222-5 222-3 222-0 221-7 664-4 6655
11 239-6 240-0 236-6 237-4 702-0 701-9
12 2485 248-8 253-0 252-2 772-7 7737
13 2549 254-2 274-4 274-5 . 824-1 8234
14 272-0 271-7 290:6 290-4 838-1 835-4
15 275-2 274-5 329-9 329-8 869-9 8695
16 284-8 285-3 346-4 346-2 898-1 8992
17 3005 300-8 372-9, 372-0 3731 936-0 935-8
18 327-2 326:6 3839 384-8 1005-1 1005:5
19 332-5 332-1 393-0 393-2 1044-4 1045-2
20 3717 372-3 403-1 4026 1091-0 1092-4
21 382-0 382-3 429-9 430-4 1104.7 1103-3
22 410-6 411-2 485-4 486-1 11435 11477
23 437-2 437-6 497-6, 496-4 496-5 1176-4 1178-2
24 462-1, 462-8 4629 499-5, 501-9 500-3 1217-9 1217-9
25 481-7, 481-3 481-5 5174 5185 1276-0 1277-0
26 514-1 513-7 529-6 530-2 13132 13121
27 5440 545-0 539-4 539-0 1368-8 1367-1
28 554-0, 552:5 552-9 563-1 552-9 1380-1 1380-6
29 —_ —_— 568-1 567-0 1434-2, 1435-1 1436-8
30 — — 590-6, 590-6 591-4 1479-2 1479-9
31 — — — — 14946, 1494-9 1497-0
* T is desoxycholic acid; a = 13:563, b = 25-8, ¢ = 7-34 A.
II is progesterone; a = 12:57, b = 13-81, ¢ = 10-34 A.
IIT is KBO;.H,0,; a = 5:86, b = 6:39, ¢ — 543 A; o = 110-55, i = 97-11, y = 89-90°.
5384 346 2904 372 5904 (a,) the rows not belonging to a and b are not corroborated
4841 217  86% 93 2364 517 (1) by the data. The following arrangement of the parallel
0 684 274 (%) rows a and b, projected end-on, is now envisaged:

Another zone is found upon combining the first

remaining line (No. 4) with No. 1:

5904 496 5364 (bs)
424 2054 124 179} 372 (b,)
0 684 274 (Bo)

It is observed that there is a constant difference of

1661 between the rows e, and b, (reading them in
opposite directions: 1663 = 2903124 = 3461794,
etc.). This means that the vector joining the reciprocal-
lattice points 2904 and 124, or any other of these pairs,
is perpendicular to the rows of @ and b. If this situation
is not accidental, it might, for instance, be caused by
the following symmetry in the array of rows parallel
to a,, projected end-on:

a,+1663 a,
ay

(%] by

« centered monoclinic lattice. However, in this array

ty+ 222 «y-|- 1664 a,
ag+ 554 a, b,
[a] @, 554 b,—554

based on a,—b, = 166} = (4—1)556%.
The zone formed by the bottom row of this scheme
is:

3164 124 68} 150 3684  (b,—55%)
1613 31 373 181 (a;—55%)
0  68% 274 (@)

Though sparingly covered, it is seen to explain line
No. 6 (162) which threatened to become an isolated
stumbling-block. Furthermore, the number 68 is seen
to occur twice, so that the zone can be reduced. The
resulting orthorhombic lattice is easily calculated and
is found to explain all data satisfactorily. After slight
re-adjustment it becomes (starting with the last-
mentioned zone which can now be called [ = 0):
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337-5

3686  461-9

1500 1811 2744 4299 } I—o
37-5 686 1619 3174 535-1 -
O 311 1244 2799 4976

3930 4241 5174

2055 2366 3299 4854 } L1
93.0 1241 2174 3729 5906 =
555 866 1799 3364 5531

559-5 5906

372:0  403-1 4964 } Lo
2595 290-6 3839 5394 =2

2220 2530 3464 501.9

5370 568-1 } I3

499.5 5296 =

The remaining coincidences among these figures are
far too few to meet the conditions for further reduc-
tion. It will be observed that the first-found zones
a and b are both entirely oblique with respect to the
final axes. This occurs frequently because of system-
atic extinctions and low multiplicity numbers for
reflexions from a plane of symmetry.

II1. KBO,.H,0,

A somewhat diffuse pattern in which a number of
lines stood out because of their perfect sharpness.
These lines were easily brought together in the following
zone:

1044-4 824-1 936-0 1380-1 (ky)
13132 6204 261-1 2340 539-1 11764 (k)
0 1661 664-4 14949  (k,)

Combining each of the remaining broadened lines
with @, as h; and h, in equation (4), a close fit was
obtained for @,. The resulting zone was extrapolated
up to R = 1500:

1426-4 898-1 702-0 838-1 1306-4 (1p)
869-9 3566 175-5 3266 8099 L)
0 166-1 664-4 1494-9 ()

No other zone containing @, could be found. How-
ever, the following zone was established using the
calculated @ = 234-0 from (k):

1042-4 702-0 829-6 14252 (my)
12179 4627 1755 356-3 10051 (my)
0 234-0 936-0 (my)

The problem is how to construct the layer parallel
to zone (k) and containing I, and m,. Usually their
point of intersection is unambiguous, but in the present
case we have two possibilities, 175} and 3564. Each
of these is examined in the following way: Suppose
1754 is the intersection:

(m,)

Q4 356-3
({;) 356-6 1755 3266 (p)
462-7

ON THE DETERMINATION OF UNIT-CELL DIMENSIONS

Other points of the layer (p) such as ¢, are now
determined by equation (7), taking 166-1 and 234-0
from zone (k) as h; and h,. The right-hand side of this
equation then amounts to 139-0. Taking for the @’s
in the left-hand side the corners of the upper left mesh
in (p), we find

Q, = 356-3+(356-6—175-5)+139-0 ,

the sign depending on whether @, lies in the acute
or in the obtuse angle between the rows (;) and (m,).
For each choice the complete layer can be calculated
mesh by mesh, a procedure which is very quickly
performed with the help of a simple adding machine.
A satisfactory accordance with the observed data was
obtained on the assumption that @ 4 lies in the obtuse
angle; the layer became:

1143-5 9082 1005-1 1434-2 (a5)
1479-2 7727 3984 356-3 6464 12687 (2,)
869-9 3566 1755 3266 8099 (25)

1435-1 782:8 4627 4748 8191 14946 (g,)
1217-9 1091-0 12963 (2,)

when drawn in the correct orientation with respect to
scheme (K), i.e. with translations 166-1 and 234-0
horizontal and vertical, respectively, and with the
short diagonal 261-1 to the upper left.

The lattice is truly triclinic because equal ¢ values
occur on a few rows only. The somewhat meagre
coverage of layer (g) and of the next layer:

1343-3 14252

1276-0 886-7 829-6 1104-7

1426-4 8981 7020 838-1 1306-4
1377-5 1042-4 1039-5 13688

by observed lines is acceptable in view of the low
multiplicity factor and the line broadening.

For triclinic and monoclinic lattices the first three
zones to be found are sometimes collinear. In that case,
too, equation (7) is used to fit them into a lattice.
If, for instance, the third zone had been the one con-
taining row (g,) from the above layer, instead of (m),
one would have sought for a difference between conse-
cutive numbers of row (¢,) exceeding a given differ-
ence in row (I,) (= (g5)) by +£139-0—the value of the
right-hand side of (7) with 166-1 and 234-0 from (k)
for h; and h,. Finding that, for example, (326-6—175-5)
—(474-8—462-7) = 139-0, this would immediately per-
mit us to draw the layer (¢) in the correct orientation
with respect to zone (k). Theoretically speaking,
(;) and (g,) might be two or more meshes apart, but
this is not likely to happen if every subsequent zone is
built up from the lowest remaining @’s.

5. General remarks

Whether the algebraic relations should be explored
systematically or not is a matter of taste. For some
patterns the author has made extensive tables of sums
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and differences, and has used these to apply equations
(4), (5) and (6); however the result seldom seemed to
justify the amount of work involved. In general it
was found that application of these equations to the
5-10 lowest observed @ values only was more satis-
factory since these are more accurate and less crowded
than higher values. Ito’s suggestion to substitute
1@, 3@, ... for Q if a relation does not hold, say, for
a certain choice of @(h;) and @(h,) in equation (4),
was rarely successful in the author’s experience. The
difficulty is that one does not know where to stop if
every line must be suspected of being a harmonic.

If no satisfactory combination for h; and h, in (4)
can be found among the first 5-10 lines, the chances
are that the lattice is partly or wholly orthogonal
since systematic extinctions are very often the cause
of ill success with equation (4). Then a comparison of
differences (e.g. by the graphical method of Lipson
(1949)) will sometimes show that all the lines can be
ordered in rows @ = @;+n%Q"" (n =0,1,2, ...), after
which the @, values can be used to construct the basic
zone perpendicular to 0—@Q"’. The @; themselves tend
to be extinct or unobservable, so that differences
within the rows will mostly be of the kind (n2—=3)Q",
ny, > n, > 1. Though analogous to Lipson’s statistical
analysis of differences, this procedure is more powerful
because it relates each individual difference relation
to the corresponding geometrical relation, and because
it is able to cope with monoclinic lattices too.

Many other characteristic situations not covered by
the examples do happen more or less frequently—
especially centred lattices. Enough has been said,
however, to make clear how one can be prepared for
and deal with such situations from a geometrical point
of view.

No inordinate amount of experience, patience, and
good luck is needed to make successful use of the
present technique—provided the data are of sufficient
quality. This brings us to the question raised before:
Can ‘indexing’ be done in a reasonable time? In this
connexion it may be of interest to state that the solu-
tion both of Examples I and IT was found in 1-2 hr.
The data came from visual measurement of a photo-
graph made with Cu K« radiation in a 114 mm.-
diameter focusing monochromator camera (de Wolff,
1948). The substances were well crystallized, since the
line width did not appreciably exceed the instrumental
value—about 0-05° 6*. The measurements were ac-

* This refers to the width at half maximum intensity
measured by a photometer. Doublets with much smaller
separation—down to about 0:02° —can be detected visually
even if the components differ very much in strength,

595

curate to within about +0-01° §. Of course the actual
analysis was much less straightforward than its de-
scription in § 4, since no record was kept of many
unsuccessful trials. Still, for such large unit cells, the
time spent on these two compounds was somewhat less
than usual. Example ITI, on the other hand, took
actually something like 10 hr. to solve. As stated, this
was a difficult case because of partial line broadening,
even though the width of the broadened lines did not
exceed 0-15° 6.

It is difficult to say which of the consequences of
line broadening is worse: the loss in accuracy, in re-
solving power or in peak-to-background ratio; any-
how, their combined effect is devastating for the
‘indexability’ of a pattern. Patterns with a line width
of 0-2° 6 or more for Cu K« can be regarded as almost
hopeless, unless there is a reasonable chance that they
may turn out to have higher symmetry than ortho-
rhombic, or that the volume of the primitive unit cell
is small, say not more than a few hundred cubic
Angstrom units.

Apart from this restriction, the author’s experience
proves that large unit cells up to 3000 A2 in volume
—even with a triclinic lattice—do not offer special
difficulties. Large size and low symmetry are infinitely
less awkward than certain fortuitous circumstances,
such as an unfortunate distribution of unobserved
lines (culminating in sub-lattices!), or axial ratios
approximating to the square root of simple fractions
—truly harassing situations, but not insoluble and
so rare that they should not discourage anyone. Our
final answer to the question of feasibility is: With
reasonably obvious exceptions, unit-cell determination
from a powder pattern is feasible in a time short
enough to justify its application—not only when single
crystals are not available, but for some purposes even
when they are.
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