
590 

Acta Cryst. (1957). 10, 590 

On the D e t e r m i n a t i o n  of U n i t - C e l l  D i m e n s i o n s  f r o m  P o w d e r  Di f fract ion  P a t t e r n s  

:BY :P. M. I)E WOLFF 

Technisch Physische Dienst T .N.O.  en T.H. ,  Delft, Netherlands 

(Received 3 December 1956 and in revised form 4 March 1957) 

The general approach proposed by Ire has been successfully used for the determination of the 
unit  cells of many compounds. The analysis of three patterns is reconstructed to illustrate several 
conclusions: 

Among the simplest algebraic relations between Q values, the one Ire mentions is the most power- 
ful for finding clues leading to a zone. Some other relations are also useful, and a general relation 
yields information about the mutual orientation of three zones. 

Determination of the Bravais type becomes automatic merely by arranging the Q's in a sche- 
matized reciprocal lattice. Any symmetry is immediately apparent because it causes the Q's to 
form sets of equal values for equivalent points. The analysis is simplified if this geometric point of 
view is taken consistently; indices need not be used explicitly until the lattice symmetry has been 
found. 

The data, obtained by using standard equipment (114 ram. diameter focusing camera), were of 
sufficient quality to allow the determination of the unit cells even of steroids in a couple of hours, 
provided the line width did not appreciably exceed the instrumental width (0.05 ° 0 at half height). 

1. Introduction 

The ' indexing problem'  is essentially a puzzle: it  
cannot be s tated in rigorous terms, or be solved in a 
general way by clear-cut methods, because of the un- 
predictable dis t r ibut ion of unobserved lines in a 
powder pat tern.  I t  would be quite an easy puzzle if 
errors of measurement  did not exist. This added in- 
convenience, however, is enough to raise some doubt  
as to whether the determinat ion of the unit  cell of an 
arb i t ra ry  polycrystal l ine phase is possible in, say, an 
average of half  a day 's  work or less. 

From the l i terature on the subject one gets the im- 
pression tha t  in the general opinion this question is 
subject  to a very strong doubt indeed. Wi th  the ex- 
ception of I re  (1949)*, all authors restrict themselves 
to special cases: uni t  cells without  a rb i t ra ry  angles 
(Hesse, 1948; Lipson, 1949; Stosick, 1949), or with 
unusual  forms (Vand, 1948). On the other hand,  I to 's  
general approach- -which  is from the triclinie ra ther  
t han  from the cubic side of the symmet ry  sequence--  
seems to be looked upon by m a n y  as a very elaborate 
one, to be used only when all other means  have failed. 

Experience gathered in the unit-cell  determinat ion 
d some 60 compounds of a wide range oI symmetry 
and cell size has convinced the present author tha t  
there is no val id  reason for such an opinion. The general 
approach is just if ied not only by  the natural  abundance 
of compounds with low symmetry ,  but  equal ly by  its 
usefulness in the determinat ion of orthorhombic,  and 
sometimes even of tetragonal  and hexagonal  uni t  cells 
(namely when they  are not immedia te ly  recognized as 
such). I t  is not  an unduly  t ime-consuming procedure, 

* Cf. also Bunn (1955). The procedure described by Nov~k 
(1954) is a graphical counterpart of Ito's general approach. 

especially if advantage  is taken of simple reciprocal- 
lattice geometry. 

Also it would perhaps have been bet ter  appreciated 
if Ito had laid less exclusive emphasis  on the algebraic 
aspects. 

A striking example  is the f inal  algebraic unit-cell  
reduction used by Ire to f ind the Bravais  type. For 
tha t  purpose the mere visual inspection of an ar ray  
of numbers ,  which have to be calculated anyway,  
will be shown to be fully adequate (cf. § 3). Still, t ha t  
does not make a large difference in the amount  of 
work spent on analyzing a pat tern.  At any  stage of 
the analysis, however, advantages can be gained by 
using geometry, as well as some algebraic relations not  
ment ioned by Ito. Together with the one Ito did 
ment ion (our equation (4)), which is by  far the most 
powerful key to the problem, all these features add 
up to the kind of technique which will now be de- 
scribed. 

2. Algebraic relations 

When the angles or distances measured in the powder 
diffraction pat tern  are expressed as a set of figures Q 
equal or proportional to sin 2 0, the problem is to fi t  
to this  set a theoretical quadrat ic  form 

Q(hkl) = anh2+a22k2 +a.~l~ +a12hk +a~kl +al~hl (1) 

such tha t  discrepancies and absences- -not  counting 
systematic  ex t inc t ions- -can  be reconciled with the 
expected accuracy and sensi t ivi ty of the measuring 
device. 

Obviously one has to f ind relations between the 
observed Q values, corresponding to theoretical  rela- 
tions derived by  el iminat ing the ai /s  from two or 
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more of the equations (1). Such theoretical relations 
can be grouped as follows: 

(a) Relations between reflexions of different orders 
from a common lattice plane: 

n e Q ( m h )  = m ~ Q ( n h )  , (2) 

where Q(h) refers to the reciprocal-lattice point with 
radius vector h. 

(b) Relations for a zone of lattice planes" The 
quadratic form (1) now can be transformed into 

Q(h'k 'O) ' "'~ . . . . . . . . . .  ~ = a n n  -$-alea !c d-a221c . (3) 

In order to eliminate the three coefficients, four of 
these equations have to be used. The result will there- 
fore be a linear equation in four Q's. There exists an 
infinite number of these; the most important  one is 
I to 's  equation: 

Q ( h z + h g ) + Q ( h l - h e )  = 2{Q(hl)+Q(he) } . (4) 

Some others, however, are also valuable, especially 

Q(hl + 2 h ~ ) - Q ( h l - 2 h e )  = 2{Q(h 1 + hg)-Q(hl-h~.)} (5) 
and 

Q(h l+3he) -Q(h~)  = 3{Q(h~+2hg)-Q(hl+he)  } . (6) 

The relations (5) and (6) are special cases of the rela- 
tion 

Q ( h + x h ' ) - Q ( h - x h ' )  = x { Q ( h + h ' ) - Q ( h - h ' ) }  

(for (5) x = 2; for (6) x = 3, h = hl+~he,  h '  = ½h~), 
which follows directly from the cosine rule, if one 
remembers tha t  Q(h) is proportional to [h[ e. 

The equations (5) and (6), apart  from serving as a 
means to detect relations among the observed Q's, 
also make it possible to calculate by mental arithmetic 
any row for which Q's of three consecutive points are 
given, because the numbers involved are relatively 
small. This extrapolation permits a quick examination 
of each of the many zone trials which often have to 
be tested before a close fit is found. 

(c) General relations" Seven equations of type (1) 
have to be used in order to eliminate the six co- 
efficients. Of the resulting linear equations in 7 Q's, 
the following is the simplest: 

Q (hz + he + ha) + Q (ha)-  Q (hi + h a ) -  Q (he + h3) 
= Q(h~+he) -Q(h~) -Q(he ) .  (7) 

This equation is easily proved by transforming hi, h e 
and h 8 into (100), (010) and (001), and substituting 
equation (1). I t  is useful in the last stages of analysis 
as well as in the calculations needed for adjusting the 
constants of triclinic reciprocal lattices (cf. Example 
I I I  of § 4). 

3. S c h e m a t i z e d  l a t t i c e s  a n d  t h e i r  a u t o m a t i c  
r e d u c t i o n  

Following Thewlis & Hutchinson (1955), we use the 
term 'reduction' in the sense of: 'bringing out the 

symmetry '  and apply it to a lattice, so tha t  confusion 
with unit-cell reduction can hardly occur. 

In equations (2)-(7) we have expressly used a general 
notation, instead of putt ing h~ = (100), h e = (010) 
etc., in order to stress the fact tha t  there is no need 
to assign even provisional indices to these vectors. 
For instance, if we find observed values Q1 . . . .  , Q4 
satisfying (4): 

Qa+Q4 = 2(QI+Q~), 

we can place these Q's at lattice points corresponding 
to the vectorial relation expressed by (4) and proceed 
to calculate the Q values of neighbouring lattice points 
by using (2), (5) and (6), without even thinking of 
indices or of the constants aij in (]). 

Now suppose a zone of the reciprocal lattice has 
been established, and suppose it contains two equal 
Q values Q(hl) = Q(h~) (which means tha t  Ihl[ = [hel), 
no equalities occurring among lower Q values. Then 
the question arises whether lattice symmetry  is the 
cause of this coincidence. If this is so, h l ± h  e will be 
directions of symmetry  in the reduced, orthogonal 
array. Referred to these axes, the points h 1 and h~ 
can be shown to receive indices with a common abso- 
lute value, say, (hr, hr) and (hr, ]~)*. 

h i +  h~ 

• ® T ® 
I 
I 

x • I X • 
i 
I 

I i \ 
• h ~  I /h~ 

x 
\ 1 /  

• (~ \ ~ 1 - - - ( ~ - - ~  h,-h 2 
[ ~  Origin of reciprocal lattice 

• Points oftheoriginal array 
X Points generated by reduction 

C) Points with new Q values 

Fig. 1. 

Consider the case shown in Fig. 1, where h, = 2. 
I t  is seen tha t  even assuming the reduced array to 
be centred, a number of new lattice points are gener- 
ated by reduction. Some of these new points have 
Q values not necessarily equal to the original ones. 
If the supposed lattice symmetry  is real, a reasonable 
number of these new Q values should occur among the 
observed data. :Now it can be proved tha t  in a given 
range on the average h r - 2 + l / h r  new Q values are 

* In terms of the original array, hr is the number of primi- 
tive meshes contained in the parallelogram with edges h 1 
and h 2 if ½(hi-l-h2) is not a lattice point, and half that number 
if it is. 
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generated for each original Q value. Thus, for a success- 
ful reduction h~ has to be small (mostly 1 or 2), or 
in other words:  the smallest equal Q values should 
occur close to the origin. 

When  a few zones have been established, these 
mus t  be combined to  a three-dimensional lattice. In  
principle this can be done by using (7) (cf. Example  
I I I , §  4). However,  reduction is often possible also in 
this stage of the analysis (cf. Examples  I and I I ,  
§4). 

The final result will ifl any  ~case be a reciprocal 
latt ice schematized layer-wise, in which the latt ice 
s y m m e t r y  is clearly shown. By  schematizing one of 
I to ' s  results in this way we shall prove tha t  this is so 
even if one deliberately ignores symmet ry  up to the 
very  last stage. The da t a  are from I to  (1949), where the 
indices of a number  of lines referred to a provisional 
triclinic unit  cell are compared with the final indices. 
The scheme taken  from the provisional indexing 
(expressed as 104/d e) is*: 

5390 
4949 2205 

h =  2 1 

3332 2646 3332 5390 k=2 | 
833 833 2205 4949 1 / l =  0 

0 686 2744 0 

0 i ~ 

2447 1075 1075 2447 k = l  } 
2986 928 242 928 2986 0 i l = 1 
2447 1075 1075 2447 i 

3712 1654 968 1654 k=0 l =  2 

The pairs of equal Q values for 1 = 0 show tha t  the  
directions of symmet ry  in this zone are 0-2646 and 
0-686. A similar symmetr ic  configuration is observed 
in the layer 1 = 1, centered about  242. Therefore it is 
immediate ly  apparen t  t ha t  the above scheme is a 
distortion of an orthorhombic latt ice: 

2646 3332 5390 / 
833 2205 / l = 0 

[] fi86 2744 

2447 1075 } l = l 242 928 298fi 

968 1654 3712 l---- 2 

Any  fur ther  reduction is impossible because there 
are no longer any  systematical ly equal sets of Q values 
in this octant.  

This example, which is about the most intricate Ire 
could have  produced, shows t h a t  even for final reduc- 
t ion Delaunay ' s  method  is ra ther  far-fetched, how- 
ever elegant and useful it m a y  be for s tandardizing 
the unit  cell of a triclinic lattice. 

Only when the complete schematized latt ice with 
its full symmet ry  has been obtained is there occasion 
to s ta r t  the assignment of indices and to calculate 

* In this and the following schemes, the origin (sub-origin) 
of a zone (layer) of the reciprocal lattice is printed in italic 
type; the origin of a reduced zone as ~ .  

the unit  cell. Up to t ha t  point, what  one is actual ly  
determining is not  a unit  cell, nor even a reciprocal 
unit  cell, but  a reciprocal lattice. 

4 .  E x a m p l e s  

For three pa t te rns  a reconstruction of the analysis will 
now be given. The lists of Q = l04 sin s 0 are given 
in Table 1. 

I. Desoxycholic acid 

The first two lines, t aken  as h 1 and h 2 in (4), sat isfy 
approximate ly  2(Ql+Q2 ) = Q2+Q4 (indices referring 
to line numbers  from Table 1). The double appearance 
of Q2 leads to the following reduced scheme (bold 
figures are corroborated by the data)  

129.6 × 165.2 × 272-0 
× 41 .3  × 112.5 × 
[ ]  × 35"6 × 142-4 

Some of the intermediate  latt ice points (crosses) 
are observed, but  a t  this stage their  number  was not  
thought  to be convincing. 

Looking for clues among the remaining lines, com- 
binations with either Q1 or Q~. in equat ion (4) were not  
immediately  found. Instead,  from Q n -  Q10 = 3 (Qs -  Q7) 
the following row was established, using (6): 

239.6 151.3 145.6 222.5 

the 'period' of which is calculated, using (4), as 

½(151.3+222.5)-145.6 = 41.3 = Q2. 

Moreover, this row exceeds the first diagonal row from 
the above zone by 110.0. This points to an ortho- 
rhombic lattice in which, af ter  completion, the re- 
maining Qobs.'s are found to fit neat ly  in the 'crosses 
position' of the above scheme; thus  the latt ice is not  
(:entered after  all: 

291.6 300-5  
129.6 138.5 

32.4 41 .3  
[ ]  8.9 

401.6 410 .5  
239 .6  248 .5  
142.4  151.3 
110"0 118.9 

327-2 371.7 434.0 
165.2 209.7 272.0 352.1 450.0 / l=0 
68.0 112.5 174.8 254-9 352.8 468.5 
35.6 80.1 142.4 222.5 320.4 436-1 

437.2 481.7 } 
275.2 309.7 382.0 462.1 
178.1 222-5 284.8 364.9 462.8 
145.6 190.1 252-4 332.5 430.4 

/=1 

472'4 481'3 ~ /=2 
440.0 448.9 475.6 / 

In  spite of the meagre coverage of the zone 1 = 0 
by observed lines, this lattice is not  a difficult one and 
could have been determined in m a n y  other ways. I t  is 
shown merely as an example of the use of equation (6). 

I I .  Progesterone 

I to ' s  equation (4) is successfully applied to the first  
two lines figuring as h 1 and h e. The complete zone 
up to Q = 600, after  some adjus tment ,  is as follows: 
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Table 1" 

I I I  i I I  
L ine  No. Calc. Obs. Calc. Obs. Calc. 

1 35.6 35.7 68.6 69.3 166.3 
2 41.3 41.4 86.6 87-3 175-5 
3 68.0 68.6 93-0 93.5 261.1 
4 112.5 112.5 124.1,124.4 124.3 356-6, 356.3 
5 118.9 119.5 150.0 150.1 462-7 

6 142.4, 142.4 142.8 161.9 162.0 474.8 
7 145.6 145.9 179.9 179-5 539.1 
8 151.3 151.7 205.5 : 205.9 620.4 
9 174.8 173.8 217.4 217.2 646.4 

10 222.5, 222.5 222.3 222.0 221.7 664.4 

11 239.6 240.0 236.6 237.4 702.0 
12 248.5 248.8 253-0 252.2 772.7 
13 254.9 254.2 274.4 274 .5  . 824.1 
14 272.0 271.7 290.6 290.4 838.1 
15 275.2 274.5 329.9 329.8 869.9 

16 284.8 285.3 346.4 346-2 898.1 
17 300.5 300.8 372.9, 372.0 373.1 936.0 
18 327.2 326.6 383.9 384.8 1005-1 
19 332.5 332.1 393.0 393.2 1044-4 
20 371.7 372.3 403.1 402.6 1091.0 

21 382.0 382.3 429.9 430.4 1104.7 
22 410.5 411.2 485.4 486.1 1143.5 
23 437.2 437.6 497.6, 496.4 496.5 1176.4 
24 462.1 ,462.8  462.9 499.5, 501.9 500.3 1217.9 
25 481-7, 481.3 481.5 517.4 518.5 1276.0 

26 514.1 513.7 529.6 530.2 1313.2 
27 544.0 545.0 539.4 539.0 1368.8 
28 554.0, 552.5 552-9 553.1 552.9 1380.1 
29 - -  - -  568.1 567.0 1434.2, 1435.1 
30 - -  - -  590.6, 590.6 591.4 1479.2 
31 . . . .  1494.6, 1494.9 

* I is desoxychol ie  acid;  a = 13-53, b = 25-8, c = 7-34 A. 
I I  is p roges te rone ;  a = 12.57, b = 13.81, c = 10-34 A. 
I I I  is K B O a . H 2 0 2 ;  a = 5.86, b = 6.39, c = 5.43/t~; ~. = 110.55, fl = 97.11, 7, = 89.90 ° . 

Obs. 

165"9 
176"1 
261"2 
356"0 
463"9 

474"0 
539"0 
620"6 
643.(.) 
665.5 

701.9 
773.7 
823.4 
835.4 
869.5 

899.2 
935.8 

1005.5 
1045-2 
1092.4 

1103.3 
1147.7 
1178-2 
1217.9 
1277.0 

1312.! 
1367.1 
1380.6 
1436.8 
1479.9 
1497.0 

538½ 346 290½ 372  590½ (a2) 

484½ 2 1 7  86{- 93 236½ 517  (al) 
0 68½ 274  (ao) 

Another  zone is found upon combining the first 
remaining line (No. 4) with No. 1: 

590½ 496 536½ (bg) 
424 205½ 124 179½ 372  (bl) 

0 68½ 274  (be) 

I t  is observed tha t  there is a constant  difference of 
166½ between the rows a 2 and b 1 (reading them in 
opposite directions" 166½ = 290½-124 = 346-179½, 
etc.). This means  tha t  the vector joining the reciprocal- 
lattice points 290½ and 124, or any  other of these pairs, 
is perpendicular  to the rows of a and b. If  this  s i tuat ion 
is not accidental,  it  might,  for instance, be caused by  
the following symmet ry  in the ar ray  of rows parallel 
to a o, projected end-on: 

%+166½  a~ 

a 1 

Fol bl 

centered monoclinic lattice. However, in this array 

the rows not  belonging to a and b are not corroborated 
by the data.  The following arrangement  of the parallel  
rows a and b, projected end-on, is now envisaged: 

ao-~ 222 a l - t  166½ (,., 

% ÷ 55½ % b, 

-~o~ -- 55 ½ b, - -  55 ~_ a I 

based on a 2 - b  1 = 166½ = (4-1)55½. 
The zone formed by  the bot tom row of this scheme 

is: 

316½ 124 68½ 150 368½ (bl--55½) 

161½ 31 37½ 181 (al--55½) 

0 68½ 274  (%) 

Though sparingly covered, i t  is seen to explain line 
No. 6 (162) which threatened to become an isolated 
stumbling-block. Furthermore,  the number  68½ is seen 
to occur twice, so tha t  the zone can be reduced. The 
resulting orthorhombie lattice is easily calculated and 
is found to explain all da ta  satisfactorily. After slight 
re-adjus tment  it becomes (starting with the last- 
ment ioned zone which can now be called 1 = 0): 
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337.5 368"6 461.9 
150"0 181.1 274 .4  429.9  

37.5 68.6 161.9 317.4 535"1 
[ ]  31-1 124-4 279.9 497.6  

393.0  424-1 517.4  
205.5  236.6  329.9  485 .4  

93-0 124.1 217 .4  372-9 590.6  
55"5 86-6 179-9 336-4 553-1 

559.5 590.6  
372.0 403.1 496 .4  
259.5 290 .6  383.9  539 .4  

2 2 2 " 0  253.0  346.4 501 "9 

537.0 568-1 
499.5 529.6 

l = 0  

/ = 1  

/ = 2  

/ = 3  

The remaining coincidences among these figures are 
far too few to meet the conditions for further reduc- 
tion. I t  will be observed tha t  the first-found zones 
a and b are both entirely oblique with respect to the 
f inal  axes. This occurs frequently because of system- 
atic extinctions and low mult ipl ic i ty  numbers  for 
reflexions from a plane of symmetry .  

I I I .  KBO 3. H~O~ 
A somewhat  diffuse pat tern  in which a number  of 

lines stood out because of their  perfect sharpness. 
These lines were easily brought together in the following 
zone: 

1044.4  824.1 936.0  1380.1 (k2) 

1313.2 620-4 261.1 234-0 539.1 1176.4 (kl) 

0 166.1 664.4  1494.9 (ko) 

Combining e a c h  of the remaining broadened lines 
with Q1 as h i and h o in equation (4), a close fi t  was 
obtained for Q4. The resulting zone was extrapolated 
up to R = 1500: 

1426.4 898.1 702.0  838.1 1306.4 (12) 

869 .9  356 .6  175.5 326.6 809.9 (ll) 

0 166.1 664.4  1494.9 (/o) 

No other zone containing Q1 could be found. How- 
ever, the following zone was established using the 
calculated Q = 234.0 from (k): 

1042.4 702 .0  829.6  1425.2 (m2) 
1217.9 462.7  175.5 356.3  1005.1 (ml) 

0 234.0 936-0 (m0) 

The problem is how to construct the layer parallel  
to zone (k) and containing 11 and m 1. Usual ly  their  
point of intersection is unambiguous,  but  in the present 
case we have two possibilities, 175½ and 356½. Each 
of these is examined in the following way: Suppose 
175½ is the intersection: 

(ml) 
QA 356.3 

(ll) 356-6 175.5 326.6 (p) 
462.7 

Other points of the layer (p) such as QA are now 
determined by equation (7), taking 166.1 and 234-0 
from zone (k) as h 1 and h 2. The r ight-hand side of this  
equation then amounts  to 139.0. Taking for the Q's 
in the left-hand side the corners of the upper left mesh 
in (p), we find 

QA = 356-3 + (356.6-- 175.5)~: 139.0, 

the sign depending on whether Q.I lies in the acute 
or in the obtuse angle between the rows (11) and (ml). 
For each choice the complete layer can be calculated 
mesh by mesh, a procedure which is very quickly 
performed with the help of a simple adding machine.  
A satisfactory accordance with the observed data  was 
obtained on the assumption tha t  Q.l lies in the obtuse 
angle; the layer became: 

1143.5 908.2 1005-1 1434-2 

1479.2 772.7  398.4 356 .3  646 .4  

869.9  356"6 175-5 326.6 

1435.1 782-8 462.7  474.8  

1217.9 1091.0 

(qs) 
1268.7 (q4) 

809-9 (qa) 
819.1 1494.6 (q2) 

1296.3 (ql) 

when drawn in the correct orientation with respect to 
scheme (K), i.e. with translat ions 166.1 and 234.0 
horizontal and vertical, respectively, and with the 
short diagonal 261-1 to the upper left. 

The lattice is t ruly triclinic because equal Q values 
occur on a few rows only. The somewhat  meagre 
coverage of layer (q) and of the next  layer:  

1343-3 1425.2 

1276.0 886.7 829-6 1104.7  

1426.4 898.1 702.0  838.1 1306.4 

1377-5 1042.4 1039.5 1368.8 

by observed lines is acceptable in view of the low 
mult ipl ic i ty  factor and the line broadening. 

For triclinic and monoclinic lattices the first three 
zones to be found are sometimes collinear. In  tha t  ea~e, 
too, equation (7) is used to fit  them into a lattice. 
If, for instance, the third zone had been the one con- 
taining row (q~) from the above layer, instead of (m), 
one would have sought for a difference between conse- 
cutive numbers  of row (q2) exceeding a given differ- 
ence in row (11) (=  (q3)) by  +139 .0- - the  value of the 
r ight-hand side of (7) with 166.1 and 234.0 from (k) 
for h 1 and h e. Finding that,  for example, (326.6-175-5) 
- ( 4 7 4 . 8 - 4 6 2 . 7 )  = 139.0, this would immedia te ly  per- 
mi t  us to draw the layer (q) in the correct orientation 
with respect to zone (k). Theoretically speaking, 
(/x) and (q2) might  be two or more meshes apart,  but  
this is not likely to happen if every subsequent zone is 
built  up from the lowest remaining Q's. 

5. Genera l  r e m a r k s  

Whether  the algebraic relations should be explored 
systematical ly  or not  is a mat te r  of taste. For some 
patterns the author has made extensive tables of sums 
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and differences, and has used these to apply  equations 
(4), (5) and (6); however the result  seldom seemed to 
jus t i fy  the amount  of work involved. In  general it  
was found tha t  application of these equations to the 
5-10 lowest observed Q values only was more satis- 
factory since these are more accurate and less crowded 
than  higher values. I to 's  suggestion to subst i tute  
¼Q, }Q, . . .  for Q if a relation does not hold, say, for 
a certain choice of Q(hl) and Q(h2) in equation (4), 
was rarely successful in the author 's  experience. The 
difficulty is tha t  one does not know where to stop if 
every line must  be suspected of being a harmonic.  

If no satisfactory combinat ion for h 1 and h~ in (4) 
can be found among the first 5-10 lines, the chances 
are tha t  the lattice is partlY or wholly orthogonal 
since systematic  extinctions are very often the cause 
of ill success with equat ion (4). Then a comparison of 
differences (e.g. by  the graphical  method of Lipson 
(1949)) will sometimes show tha t  all the lines can be 
ordered in rows Q ~ ' -  ~ "  = ~ i ~ - n ~  (n = 0,1,  2, . . . ), after 
which the Qi' values can be used to construct the basic 
zone perpendicular  to 0 - Q " .  The Qi' themselves tend 
to be extinct  or unobservable,  so tha t  differences 
within the rows will most ly  be of the kind (n~-n~)Q", 
nl > n 2 > 1. Though analogous to Lipson's  stat ist ical  
analysis of differences, this procedure is more powerful 
because it relates each individual  difference relation 
to the corresponding geometrical relation, and because 
it is able to cope with monoclinic lattices too. 

Many other characteristic si tuations not covered by 
the examples do happen  more or less f r equen t ly - -  
especially centred lattices. Enough has been said, 
however, to make clear how one can be prepared for 
and deal with such si tuations from a geometrical point  
of view. 

:No inordinate amount  of experience, patience, and 
good luck is needed to make successful use of the 
present t echnique- -provided  the da ta  are of sufficient 
quali ty.  This brings us to the question raised before: 
Can ' indexing'  be done in a reasonable t ime ? In  this 
connexion it m a y  be of interest  to state tha t  the solu- 
t ion both of Examples  I and I I  was found in 1-2 hr. 
The data  came from visual measurement  of a photo- 
graph made with Cu K s  radiat ion in a 114 mm.- 
diameter  focusing monochromator  camera (de Wolff, 
1948). The substances were well crystallized, since the 
line width did not appreciably exceed the ins t rumenta l  
va lue - -abou t  0.05 ° 0". The measurements  were ac- 

* This refers to the width at half maximum intensity 
measured by a photometer. Doublets with much smaller 
separation--down to about 0.02 ° 0--can be detected visually 
even if the components differ very much in strength. 

curate to within about  ±0.01 ° 0. Of course the actual  
analysis was much  less straightforward than  its de- 
scription in § 4, since no record was kept  of m a n y  
unsuccessful trials. Still, for such large uni t  cells, the 
t ime spent on these two compounds was somewhat  less 
t han  usual. Example  III ,  on the other hand,  took 
actual ly something like 10 hr. to solve. As stated, this  
was a difficult case because of part ial  line broadening, 
even though the width of the broadened lines did not 
exceed 0.15 ° 0. 

I t  is difficult to say which of the consequences of 
line broadening is worse: the loss in accuracy, in re- 
solving power or in peak-to-background ratio;  any- 
how, their  combined effect is devasta t ing for the 
' indexabi l i ty '  of a pattern.  Pat terns  with a line width 
of 0.2 ° 0 or more for Cu K s  can be regarded as almost  
hopeless, unless there is a reasonable chance tha t  they  
m a y  turn out to have higher symmet ry  than  ortho- 
rhombic,  or tha t  the volume of the pr imit ive uni t  cell 
is small, say not  more than  a few hundred  cubic 
_~mgstrSm units.  

Apar t  from this restriction, the author 's  experience 
proves tha t  large unit  cells up to 3000 /~a in volume 
- - e v e n  with a triclinic la t t ice- -do not offer special 
difficulties. Large size and low symmet ry  are infini tely 
less awkward than  certain fortuitous circumstances, 
such as an unfor tunate  distr ibution of unobserved 
lines (culminating in sub-lattices!), or axial  ratios 
approximat ing  to the square root of simple fractions 
- - t r u l y  harassing situations, but  not  insoluble and 
so rare tha t  they  should not  discourage anyone. Our 
f inal  answer to the question of feasibi l i ty is: Wi th  
reasonably obvious exceptions, unit-cell determinat ion 
from a powder pa t te rn  is feasible in a t ime short 
enough to jus t i fy  its appl ica t ion- -not  only when single 
crystals are not  available,  but  for some purposes even 
when they  are. 
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